
Modular System for Mitigating  Flood Attacks  
Devisha Srivastava 

Abstract— Denial-of-Service (DoS) flooding attacks have 
become a serious threat to the reliability of the Internet. Web 
servers face all kinds of users; some of them engage malicious 
activities to degrade or completely block network services, 
such as flooding attacks. As a result, lots of resource and 
bandwidth on web sites might be wasted. While many 
approaches exist to filter network-level attacks, the application 
level attacks are harder to detect at the firewall. Filtering at 
this level can be computationally expensive and difficult to 
scale, while still producing false positives that block legitimate 
users. 
This paper presents a web application level approach to 
mitigate DoS attacks. The proposed method is to build a 
security gateway module with reverse proxy support that 
provides attack surface reduction enhancements against the 
HTTP Flood Attacks at the web application level. Web-based 
anomaly detection with reverse HTTP proxy which intercepts 
traffic and protects web application by providing users with a 
CAPTCHA to verify legitimate requests is used. 

Keywords— DoS, HTTP Flood Attack, CAPTCHA, False
Positives

I. INTRODUCTION 

     Denial of Service is an attack which makes an 
information or data unavailable to its intended hosts. In a 
Denial-of-Service (DoS) flooding attack, attackers aim to 
disrupt and prevent legitimate communications by 
congesting links in a network. The first series of high-
profile and well-publicized DoS flooding attacks occurred 
in 2000, in which attackers disrupted the services of various 
popular websites including Yahoo, eBay and CNN [4]. 
Today, DoS flooding attacks have become a serious threat 
to the reliability of the Internet. In order to accomplish a 
DoS state on systems, flood attacks aim to push limits of 
system usage to the out of boundaries determined by the 
normal usage scenarios. There may be a flood attack 
between the considered normal network traffic and the 
considered abnormal network traffic.  
     The main reason of flood attacks is the vulnerability in 
the protocol. Before starting a discussion on the web 
application level approach to the HTTP flood attacks, it is 
important to clarify whether the attack is a HTTP flood 
attack or not. To consider an attack attempt as a HTTP 
flood attack, a TCP packet which carries a HTTP request 
payload should be interpreted by the web service. Attack 
surface for HTTP flood attacks always begins with the web 
service and its backend infrastructure. A HTTP flood attack 
attempt, which cannot make it to the web service, is just a 
TCP DoS attack that saturates the network traffic. 

 This paper presents an approach to mitigate the impact 
of false positives, describes a prototype implementation of 
the system, and provides a discussion of its applicability to 
real-world applications. The objective is to build a security 
gateway module with reverse proxy support that provides 

attack surface reduction enhancements against the HTTP 
flood attacks at the web application level. The approach 
proposed composes a web-based anomaly detection system 
with a reverse HTTP proxy which intercepts traffic and 
protects web application by allowing only legitimate 
requests. It is a good security practice to implement 
additional precautions to every mitigation level including 
the web application level and this proxy server proves as an 
additional layer of defense by protecting the web server. 
     Web-based applications represent a serious security 
exposure. These applications are directly accessible through 
firewalls by design, and, in addition, they are often 
developed in a hurry by programmers who focus more on 
functionality and appearance than security. As a result, 
web-based applications have recently become the primary 
target of attempts to compromise networks [1]. Reverse 
proxies can hide the existence and characteristics of an 
origin server or servers. Application firewall features can 
protect against common web-based attacks. Without a 
reverse proxy, removing malware or initiating takedowns, 
for example, can become difficult. In the case of secure 
websites, a web server may not perform SSL encryption 
itself, but instead offloads the task to a reverse proxy that 
may be equipped with SSL acceleration hardware. A 
reverse proxy can distribute the load from incoming 
requests to several servers, with each server serving its own 
application area. In the case of using reverse proxy in the 
neighborhood of web servers, the reverse proxy may have 
to rewrite the URL in each incoming request in order to 
match the relevant internal location of the requested 
resource.  

 The situation of false positives is ameliorated by the 
approach of anomaly detection systems that characterize the 
“normal" use of a web-based application. These systems are 
able to block web requests that do not fit the established 
parameters of “normality" [2,3]. Unfortunately, anomaly 
detection systems are prone to false positives due to over-
simplified modeling techniques or insufficient training. 
Therefore, if the anomaly score of a web request is used as 
the basis to deny access to a web site, a false positive may 
cause the denial of a legitimate request. This situation is the 
result of an “all-or-nothing" approach, in which all requests 
that are identified as anomalous are automatically 
considered malicious. 

To mitigate the problem of false positives generated by 
anomalous but benign requests, a novel solution based on 
anomaly-based reverse proxy is proposed.  

 The proposed security module incorporates reverse 
proxy support. It implements security in web applications 
by meeting three important goals:  

(1) Accurate attack detection,  
(2) Effective response (dropping or rerouting) to reduce 
the flood, and  

Devisha Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 345-349

www.ijcsit.com 345



(3) Precise identification of legitimate traffic and its safe   
      delivery to the victim. 
 The modular system detects IP addresses of the 

abnormally excessive requests according to a previously 
defined rule, reduces attack surface, return these requests 
with a low resource used response, block detected IP 
addresses by using other components at the other mitigation 
levels. It features reCAPTCHA support, slow down or 
restrict access for automated tools (HTTP flood, brute force 
tools, etc.), save your server & backend infrastructure 
resources under an attack, implicit deny of application 
access for DoS/DDoS attacks etc. 

II. BACKGROUND AND RELATED WORK 

A. What is a Denial of Service? 

Denial of Service attack is performed solely with the 
intention to deny the legitimate users to access services. 
Since DoS attack is usually performed by means of bots, 
automated software. These bots send a large number of fake 
requests to the server which exceeds server buffer capacity 
which results in DoS attack [5]. 

The defense against DoS flooding attacks is significantly 
complicated by the fact that the Internet lacks 
accountability at the network layer: it is very difficult, if not 
impossible, for the receiver of an IP packet to associate the 
packet with its real sender, as the sender is free to craft any 
part of the packet [4].  

Although various other captivating approaches have been 
suggested (e.g. [6], [7], [8], [9], [10]), the current state is 
that DoS attacks are not fully mitigated. 

 

B. CAPTCHA 

DoS attack is usually performed by means of bots, 
automated software. These bots send a large number of fake 
requests to the server which exceeds server buffer capacity 
which results in DoS attack. DoS attacks have become more 
powerful in the last several years as the level of attack 
automation has increased. 

One approach to prevent this problem is CAPTCHA 
verification. The CAPTCHA submitted by user is verified 
before allowing the access to credentials page. The 
CAPTCHA would consist of variety of patterns that would 
be distinct in nature and are randomly generated during 
each visit to the web page. Most of the current web sites use 
a common methodology to generate all its CAPTCHAs. 
The bots usually take advantage of this approach since bots 
are able to decipher those CAPTCHAs. A set of distinct 
CAPTCHA patterns prevents bots to decipher it and 
consequently helps to reduce the generation of illicit traffic 
[5]. 

CAPTCHA is an acronym for "Completely Automated 
Public Turing test to tell Computers and Humans Apart" is 
a type of challenge-response test used in computing to 
determine whether or not the user is human. 

A new concept called reCAPTCHA is introduced by 
Google is a free service to protect your website from spam 
and abuse. reCAPTCHA uses an advanced risk analysis 
engine and adaptive CAPTCHAs to keep automated 
software from engaging in abusive activities on your site. It 

does this while letting your valid users pass through with 
ease. reCAPTCHA offers more than just spam protection. 
Every time our CAPTCHAs are solved, that human effort 
helps digitize text, annotate images, and build machine 
learning datasets. This in turn helps preserve books, 
improve maps, and solve hard AI problems. 

The CAPTCHA tests must be: 
o Easy for humans to pass. 
o Easy for a tester machine to generate and grade. 
o Hard for a software robot to pass. The only 

automaton that should be able to pass a 
CAPTCHA is the one generating the CAPTCHA. 

o Having Accessibility option for the visually 
impaired. 

III. PROPOSED SYSTEM 

The arriving HTTP requests first encounter a reverse 
proxy. Here they are filtered based on a set of rules. A 
decision engine uses statistical anomaly detection to 
generate rules for filtering traffic and sending suspicious 
traffic to the security module which results in presenting the 
end user with a CAPTCHA to verify they are a legitimate 
user. Experiments performed on a scalable implementation 
demonstrate effective mitigation of attacks launched using a 
real-world DoS attack tool. 

The security module uses a novel approach to mitigate 
flooding based DoS attacks by incorporating connection 
limits that are used to identify and block malicious traffic, 
logging of flooder IPs and alerts that are triggered when a 
connection limit is exceeded.  

The rule created for anomaly detection is well defined as 
10 requests per second and is successful to mitigate false 
positives. Our proposed system thereby ameliorates the 
problem of false positives and secures the application. 

The data flow diagram described below shows the 
functioning of the proposed system as HTTP requests are 
made to the server. 

 
Fig. 1  Data Flow Diagram of the proposed system 

A. Approaches for Security Module to Prevent Flooding 

There are two approaches defined for the security 
module to prevent flooding attacks more efficiently. 

Devisha Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 345-349

www.ijcsit.com 346



1)  Regulating Request:  The basic approach is that if 
more requests are made during a certain period then we 
identify those IP addresses violating the predefined rules. If 
the rate of requests per second is more than 10 then action 
is required to prevent the IP address of the request. These IP 
addresses are redirected to a low resource consuming page 
having a CAPTCHA question. If the user is able to 
correctly answer the question within the allotted time of 20 
seconds then they are able to access the web application. 

2)  Access Deny for each request:  This is an approach 
that denies access to all incoming requests. It treats each 
request as malicious. The users are directed to a CAPTCHA 
page where they have to correctly solve the question within 
the allotted time. If solved, they are proved to be legitimate 
users; else, the application remains blocked until the 
CAPTCHA is solved and the IP address gets blacklisted. 

B. Benefits of Proposed System 

The proposed method to detect flooder IP addresses and 
mitigate HTTP flood attacks at the web application level 
has following features: 

 
 All pages of the Web application invoked by the 

use of a common script. 
 Each IP address is recorded micro-seconds of his 

time to request information be recorded. 
 When requests are made from the same IP address 

information comparison. 
 White exceptions for IP addresses in the list 

creation. 
 Counter value created in the IP address and time 

information recorded with some of the micro 
seconds. 

 Termination process for determining a timeout 
value. 

 If a user does not want to wait for real this time, 
the CAPTCHA to be asked. 

 Blacklist file containing details of the IP addresses 
which are blacklisted and cannot access the 
network. 

 Excluded List file contain details of the IP 
addresses which are excluded from ever accessing 
the network. 
 

This method also has the following benefits for utilizing 
CAPTCHA: 

 
1.  Simple to implement. 
2.  Easily identify between human generated traffic and     
     robot generated traffic 
3.  Server resources are marginally consumed. Since    
     CAPTCHA verification process takes less time as   
     compared to verify the username and password. 
4.  Even a simple modification in the CAPTCHA makes  

it   difficult for a bot to decipher a CAPTCHA. 
5.  Access Deny for each request approach which has  
     CAPTCHA question for all users secures the 

application. 

IV. PERFORMANCE EVALUATION 

In order to test the feasibility of the system we evaluate 
our performance using Web Server Stress Tool 7. This 
software enables us to create a DoS attack on a selected 
URL. We assign the number of clicks per user so as to 
generate a sufficient number of clicks needed for attack. 
Once the web application without included security module 
is attacked we can see that the attack takes place causing 
loss of bandwidth and resources.   

 
Fig. 2:  Testing performance using Web Server Stress Tool 7 

Now we include our security module in the application 
and again start the test. It is evaluated that the surface attack 
is reduced and no loss of resources or bandwidth is 
witnessed. The system’s performance is not affected and 
thus this test concludes the importance of our module in 
detecting and mitigating flood attacks. 
     Firstly, the application is tested without any security 
module present. It is observed that when DoS attack is 
emulated on the application, the CPU and Memory usage is 
higher than usual. The resources are wasted and 
performance of the system is impaired. This can be 
controlled by utilizing our security module which 
successfully saves loss of resources and bandwidth. 

 
Fig. 3:  Testing Memory and CPU usage of application under Dos Attack 

 

Devisha Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 345-349

www.ijcsit.com 347



 
Fig. 4  The Kbits/sec of DoS traffic that reached the Web Application 

without security module 

 
Fig. 5:  The Kbits/sec of DoS traffic that reached the Web Application with 

security module 

 
 
 
 

 
Fig. 6:  The click time/sec of DoS traffic that reached the Web Application 

without security module 
 

 
Fig. 7:  The click time/sec of DoS traffic that reached the Web Application 

with security module 
 
 
 
 
 
 

 

Devisha Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 345-349

www.ijcsit.com 348



V. CONCLUSIONS 

We have demonstrated a modular test system that 
effectively detects and mitigates flooding based DoS 
attacks. This system successfully ameliorates the problem 
of false positives and secures the application. This system 
implementation is also capable to slow down the Brute 
Force Attacks. Furthermore, the detected IP addresses when 
shared with other security components can block attackers’ 
access to the web application. 

The system is verifiably easy to include and the proposed 
CAPTCHA mechanism makes it relatively easier to 
implement. The benefit being that it blocks flooder IP 
addresses by differentiating between human and bot. 

By evaluating its performance with an experiment to 
create DoS attacks, our system detected and mitigated the 
attack. It was able to restore normal response times to a web 
application that was experiencing a DoS attack. It did so 
efficiently and reduced the impact on legitimate traffic. 

REFERENCES 
1. L. Garber. Denial-of-Service Attacks Rip the Internet. IEEE 

Computer Magazine, 33, 2000.An Anomaly-driven Reverse Proxy 
for Web Applications 

2. Breach Security. Breachgate.http://www.breach.com/, June 2005. 

3. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In 
Proceedings of the 10th ACM Conference on Computer and 
Communication Security (CCS '03), pages 251{261, Washington, 
DC, October 2003. ACM Press. 

4. Liu, Xin, “Mitigating Denial-of-Service Flooding Attacks with 
Source Authentication”, In Diss. Duke University, 2012 

5. M Mehra, M Agarwal, R Pawar, and D Shah. “Mitigating denial of 
service attack using CAPTCHA mechanism”. In Proceedings of the 
International Conference & Workshop on Emerging Trends in 
Technology, pages 284-287. ACM, 2011. 

6. J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the 
Source,” in Proceedings of the ICNP 2002, November 2002.  

7. Jelena Mirkovic, D-WARD: Source-End Defense Against 
Distributed Denial-of-Service Attacks, Ph.D. thesis, University of 
California Los Angeles, 2003. 

8. D Xuan, R Bettati, and W Zhao, “A gateway-based defense system 
for distributed dos attacks in high-speed networks,” in Proceedings of 
2001 IEEE Workshop on Information Assurance and Security, June 
2001.  

9. Debra L. Cook, William G. Morein, Angelos D. Keromytis, Vishal 
Misra, and Daniel Rubenstein., “Websos: Protecting web servers 
from ddos attacks,” in In the Proceedings of the 11th IEEE 
International Conference on Networks (ICON)., 2003.. 

10. J. Ioannidis and S. M. Bellovin, “Pushback: Router-Based Defense 
Against DDoS Attacks,” in Proceedings of NDSS, February 2002. 
 

 

Devisha Srivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 345-349

www.ijcsit.com 349




